Israel Open Astronomy Olympiad 2025

Physical and mathematical constants

Speed of light in vacuum c = 299792458 m/sStefan-Boltzmann constant $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^2/\text{K}^4$ Gravitational constant $G = 6,67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$ Electron mass $m_e = 9.109 \cdot 10^{-31} \text{ kg}$ Proton mass $m_p = 1.673 \cdot 10^{-27} \text{ kg}$ Neutron mass $m_n = 1.675 \cdot 10^{-27} \text{ kg}$ Electron-volt (eV) is an energy unit, 1 eV = $1.602 \cdot 10^{-19}$ J. Usual prefixes are used with eV, so 1 keV = 1 000 eV, 1 MeV = 1 000 000 eV Number of arcseconds in radian: 1 rad = 206265''

Astronomical constants

1 tropical year = 365.2422 days = 31.557 million seconds 1 solar day = 24^{h} = 86 400 seconds 1 sidereal day = $23^{h} 56^{m} 04^{s}$ = 86 164 seconds 1 astronomical unit (au) = 149,6 million km 1 parsec (pc) = $3.086 \cdot 10^{16}$ m = 206265 au = 3.262 ly (light years) Hubble constant H_0 = 70 km/s/Mpc Obliquity of the ecliptic to the equator ε = 23.5° Inclination of the lunar orbit to ecliptic ε_{Moon} = 5.145°

Solar constants

Mass $\mathcal{M}_{\odot} = 1,989 \times 10^{30}$ kg Radius $R_{\odot} = 696$ thousand km Photosphere temperature $T_{\odot} = 5778$ K Luminosity $L_{\odot} = 3.826 \cdot 10^{26}$ W Absolute magnitude $M_{\odot} = +4.73^m$ Apparent bolometric magnitude $m_{b,\odot} = -26.83^m$ Apparent angular diameter, as seen from Earth = 32'

Object	Radius, km	Mass, 10 ²⁴ kg	Semi-major axis, au
Sun	695 500	1 989 000	
Mercury	2 440	0.330	0.387
Venus	6 052	4.867	0.723
Earth	6 378	5.972	1.000
Mars	3 390	0.642	1.524
Jupiter	69 911	1 898.0	5.203
Saturn	58 232	568.3	9.537
Uranus	25 362	86.81	19.189
Neptune	24 622	102.4	30.070

Formula page

Upper culmination height $h = \delta - \varphi + 90^{\circ}$; if more than 90°, use $h = -\delta + \varphi + 90^{\circ}$ Synodic period S and sidereal (orbital) period P, as seen from a planet with orbital period E, are related by $\frac{1}{E} = \frac{1}{p} + \frac{1}{s}$ for outer planets and $\frac{1}{E} = \frac{1}{p} - \frac{1}{s}$ for inner planets. Third Kepler's law: $\frac{MT^2}{a^3} = \frac{4\pi}{c}$; for two bodies orbiting the same central object: $\frac{T^2}{a^3} = const$ Pogson formula $\frac{l_1}{l_2} = 10^{0.4(m_2 - m_1)}$ or $m_2 - m_1 = 2.5 \lg(l_1/l_2)$ Absolute magnitude $M = m + 5 \log d [pc] - 5$ Inverse square law $I = L/4\pi d^2$ Annual parallax p["] = 1/d [pc]Stefan-Boltzmann law $\frac{L}{L_{\odot}} = \left(\frac{R}{R_{\odot}}\right)^2 \left(\frac{T}{T_{\odot}}\right)^4$ Hubble-Lemaître law $v = H_0 r$, while $v \ll c$ The scale factor of the Universe is $a = \frac{1}{z+1}$

Area of ellipse is πab

Distance from ellipse center to its focus is ae

Eccentricity is $e = \sqrt{1 - b^2/a^2}$

Spherical sine theorem $\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$

Spherical cosine theorem $\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A$