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Israel Open Astronomy Olympiad 2025 
Senior age group problems  

 

Time to ionize the Universe! (60 p) 
Before the ultraviolet radiation from the early stars re-ionized the interstellar and intergalactic 
gas, it was completely neutral. 

In this problem, we will consider the reionization of the early Universe by the first stars – so-
called Population III stars. According to current models, the reionization was occurring roughly 
between the redshifts of 20 to 6. 

To simplify the problem, let us use the following assumptions: 

• The interstellar matter consists only of hydrogen atoms (note that hydrogen nucleus is 
just a proton, and hydrogen atom mass is roughly equal to proton mass); 

• Most of stellar energy is produced when fusing hydrogen to helium; 
• The ionization and recombination cross-sections do not depend on the radiation 

wavelength; 
• The luminosity of a star is constant throughout its life. 

Assume that the current average density of baryonic matter (protons, neutrons, electrons) of the 
Universe is 𝜌0 =  4.2 · 10−28 kg/m3. Use other constant values from the formula and constant 
page. 

Let us consider a single Population III star that was born at a redshift of z = 19. The Universe was 
not yet so inhomogeneous at that time, and we will assume that outside the star forming region 
the matter density is still approximately constant and equals to the average matter density of 
the Universe. 

A  Compute the average baryonic matter density of the Universe at the time of the formation of 
this star. Express this in the mass density units (kg/m3) as well as a number density of hydrogen 
(that is, average number of hydrogen atoms per m3). 

Answer: At redshift of z = 19, the mass density of baryonic matter is 𝜌 =[           ] kg/m3 (7 p.), that 
corresponds to the number density of hydrogen atoms 𝑛𝐻 =[        ] m-3 (2 p.). 

Solution:  

The scale factor of the Universe at the considered time was equal to 𝑎 =
1

𝑧+1
=

1

20
, meaning that 

the Universe was 20 times smaller in every direction (this does not imply that the Universe is 
finite). The matter density was then 𝑎3 = 8000 times larger than it is now, that is, 𝜌(𝑧) =

(𝑧 + 1)3𝜌0 and equal to 3.36 ⋅ 10−24 kg/m3. 

The hydrogen atom mass is roughly equal to the proton mass 𝑚𝑝 = 1.673 ⋅ 10−27 kg. The 

number density of atoms was then 𝑛𝐻(𝑧) =
𝜌(𝑧)

𝑚𝑝
=

3.36⋅10−24

1.673⋅10−25 = 2 010 particles per m3.  
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At that time there was about two particles per liter on average in the Universe, and this is still 
8000 times more than what we have now. The Universe is extremely rarefied on average and 
stars and planets are result of long gravitational collapse of some part of this matter. 

In all questions below, assume the number density of hydrogen atoms to be 1000 particles per 
cubic meter. This may differ from the result you obtained previously. 

 

The Population III star that we consider had an initial mass of 𝑀0  =  80𝑀⊙. Such stars are 
estimated to live only about 𝑡 = 3 million years. During this time, they convert 𝑝 =  0.1 of 
hydrogen they contain to helium. 

B  Compute the lifetime-average star luminosity (power of the emitted radiation) in W and in 
units of Solar luminosity 𝐿⊙. When four protons combine to form a 4He nucleus in the center of 
a star, about ε = 26.2 MeV energy is emitted and converted to radiation (1 MeV = 1.6 ⋅ 10−13 J). 
Neglect the energy required for initial heating of the star. 

Answer: The lifetime-average luminosity of this star is [            ] W (10 p.) that converts to [            ] 
𝐿⊙ (2 p.). 

Solution: The energy produced in converting four protons (having mass 4𝑚𝑝 = 6.692 ⋅ 10−27 kg) 
into helium is 𝜀 = 26.2 MeV =  4.20 ⋅ 10−12 J, therefore the total energy emitted in the lifetime of 
the star will be 

𝐸𝑡𝑜𝑡 = 𝑝𝑀0 ⋅
𝜀

4𝑚𝑝
 

So the average luminosity is 

𝐿𝑎𝑣 =
𝐸𝑡𝑜𝑡

𝑡
=

𝑝𝑀0

𝑡
⋅

𝜀

4𝑚𝑝
 

Inserting the values, we obtain 𝐿𝑎𝑣 = 1.06 ⋅ 1032 W or 2.77 ⋅ 105 𝐿⊙. This luminosity is much 
larger than that of the Sun, but below the brightest known stars (mostly, Wolf-Rayet stars and 
so-called Luminous blue variable stars) in the Milky Way, and similar e.g. to Alnitak, one of the 
stars in the Orion belt and a bright O-type star. 

In all questions below, assume that the star luminosity equals 𝐿𝑎𝑣 = 2 ⋅ 1031 W. This may differ 
from the result you obtained previously. 

 

About 𝑃 =  40% of this luminosity is emitted in the energy range that ionizes neutral hydrogen, 
that is, above the so-called Lyman limit (𝜀𝐿𝑦 = 13.6 eV). If such “ionizing” photon with any 
energy above Lyman limit is interacting with a neutral hydrogen atom, this atom gets ionized. 

C  Compute the rate at which the ionizing photons are emitted (that is, number of ionizing 
photons per second) by the star. Assume that the average energy of ionizing photons is 𝜀𝑎𝑣 =

20 eV. 

Answer: This star emits approximately [           ] ionizing photons per second (6 p.). 

Solution: 
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The number of ionizing photons emitted per second is the ionizing part of the luminosity of the 
star 𝑃 ⋅ 𝐿𝑎𝑣 divided by average amount of energy each photon contains 𝜀𝑎𝑣 = 20 eV = 3.20 ⋅

10−18 J. Numerically, 
𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑖𝑛𝑔

𝑑𝑡
=

𝑃⋅𝐿𝑎𝑣

𝜀𝑎𝑣
= 2.50 ⋅ 1048 ionizing photons per second. 

In all questions below, assume that the ionizing photons are emitted with rate 𝐿𝑎𝑣 = 1 ⋅ 1049 
photons per second. This may differ from the result you obtained previously. 

 

After this star starts to shine, its ionizing radiation creates an expanding sphere (“bubble”) of 
ionized hydrogen, usually called a Strömgren sphere, located in an initially neutral surrounding 
interstellar medium. While the star is shining, this region gradually expands. 

D  Let us consider a Strömgren sphere with radius 𝑅 =  1 kpc = 1 000 pc. Determine the 
ionization front speed, in km/s, that is, the speed, at which this ionized region around the star 
expands. Assume that the ionizing radiation is fully reaching the surface of the bubble and is 
fully absorbed there.  

Here you should assume that the hydrogen is either fully ionized, or fully neutral, and that this 
ionized region has a sharp edge. Neglect the effect of the recombination. 

Answer: The photoionized region around this star (the Strömgren sphere) expands at the speed 
[             ] km/s when its radius is 1 kpc = 1 000 pc (12 p.). 

Solution:  

The ionization front speed is determined by the equality of number of ionizing photons to the 

number of ionized atoms 
𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑖𝑛𝑔

𝑑𝑡
=

𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑒𝑑

𝑑𝑡
. The emission rate of ionizing photons was 

computed in the previous question and equals 𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑖𝑛𝑔

𝑑𝑡
= 1.33 ⋅ 1049 photons/second. The 

number of ionized atoms, if the ionization front passes distance 𝑑𝑠, is 𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑒𝑑 = 𝑑𝑉 ⋅ 𝑛𝐻 =

4𝜋𝑅2 ⋅ 𝑑𝑠 ⋅ 𝑛𝐻. The factor  4𝜋𝑅2 ⋅ 𝑛𝐻 = 4𝜋 ⋅ (103 ⋅ 3.086 ⋅ 1016 m)2 ⋅ 2.01 ⋅ 103 m−3 = 2.41 ⋅

1043 m-1, meaning that increasing the ionized region by one meter requires 2.41 ⋅ 1043 ionizing 
photons. 

Expressing the ionization front speed 𝑣 = 𝑑𝑠/𝑑𝑡, we obtain 

𝑣 =
𝑑𝑠

𝑑𝑡
=

𝑃 ⋅ 𝐿𝑎𝑣

𝜀𝑎𝑣
⋅

1

4𝜋𝑅2𝑛𝐻
=

1.33 ⋅ 1049 s−1

2.41 ⋅ 1043 𝑚−1
= 2.09 ⋅ 105

𝑚

𝑠
= 209 km/s 

Note that 1000 pc = 1 kpc is about 10% of the distance from the Sun to the center of the Milky 
way and is comparable to the size of modern dwarf galaxies. So even a single Population III star 
was able to ionize the interstellar medium around its formation region. Based on computer 
simulations, it is expected that the Population III stars were born in groups, that were rapidly 
dispersing the remaining gas in their forming region and ionizing huge expanses of space around 
them. 

 

The protons do not interact with the ionizing radiation. However, they may recombine (join) with 
an electron, producing back a hydrogen atom. The rate of this process called recombination, 
that is, a probability that a single atom will recombine per time interval equals 𝑟𝑟𝑒𝑐  =  𝛼𝑟𝑒𝑐  ·  𝑛𝑒, 
where 𝑛𝑒   is the electron number density. The hydrogen recombination coefficient is 𝛼𝑟𝑒𝑐  =  3 ·

10−19 m3/s. 
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E  Compute the amount of hydrogen recombinations per second in each cubic meter of fully 
ionized medium far from the star forming region 𝑑𝑁𝑟𝑒𝑐/𝑑𝑡/𝑑𝑉. 

Answer: Due to recombination, there will be [            ] atoms formed from hydrogen ions every 
second in every cubic meter of ionized medium if the ionizing radiation will suddenly disappear 
(7 p.). 

Solution: 

As we assume that the primordial plasma consists purely of hydrogen, the number density of 
electrons in the fully ionized medium equals the number density of protons. Therefore the 
recombination rate per unit volume will equal 

𝑑𝑁𝑟𝑒𝑐

𝑑𝑡 ⋅ 𝑑𝑉
= 𝑟𝑟𝑒𝑐 ⋅ 𝑛𝐻 = 𝛼𝑟𝑒𝑐𝑛𝑒𝑛𝐻 = 𝛼𝑟𝑒𝑐𝑛𝐻

2  

Numerically, there will be 3.00 ⋅ 10−13 recombination events per second per m3. 

It is not asked in the question, but this implies the fully ionized hydrogen will recombine after 

time 𝑡𝑟𝑒𝑐 =
1

𝛼𝑟𝑒𝑐𝑛𝐻
≈

2000

3.00⋅10−13 = 211 million years, comparable to the age of the universe at 𝑧 =

19 which was also about 200 million years. 

As the universe expands, the matter density drops and the recombination time grows. Currently, 
when the matter number density is 8000 times less, the recombination time of fully ionized 
plasma far from galaxies is about 8000 times longer, that is, much longer than the age of the 
universe. One may conclude that the intergalactic medium once ionized by the first stars, will 
never recombine due to the continuing expansion of the universe, even if no ionizing radiation 
will be emitted. 

In all questions below, assume that the requested value of the hydrogen recombinations per 

unit volume and unit time equals 𝑑𝑁𝑟𝑒𝑐

𝑑𝑡⋅𝑑𝑉
= 1 ⋅ 10−12 1

s m3. This may differ from the result you 

obtained previously. 

 

F  Determine the equilibrium volume and equilibrium radius of the Strömgren sphere 𝑉𝑆 and 𝑅𝑆, 
when the number of the ionizing photons will just be enough to keep the recombining ions in the 
sphere ionized. Express the answer in kpc3 and kpc (kiloparsec), respectively. 

Answer: The Strömgren sphere will grow until reaching the equilibrium volume of [          ] kpc3 
(10 p.) corresponding to equilibrium radius of [          ] kpc (4 p.) and then stop growing due to 
hydrogen recombination occurring inside it.  

Solution: 

The Strömgren sphere radius will be defined by the equilibrium between ionization and 

recombination events: 
𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑖𝑛𝑔

𝑑𝑡
=

𝑑𝑁𝑟𝑒𝑐

𝑑𝑡
. The number of recombination events in the ionized 

volume is 𝑑𝑁𝑟𝑒𝑐

𝑑𝑡
=

𝑑𝑁𝑟𝑒𝑐

𝑑𝑡 𝑑𝑉
⋅ 𝑉, where 𝑉 =

4

3
𝜋𝑅3 is the volume of the Strömgren sphere. Expressing 

the radius from the equations above, we obtain its equilibrium value: 
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𝑅𝑒𝑞 = √
3𝑉𝑒𝑞

4𝜋

3

= √
3

4𝜋
⋅

𝑑𝑁𝑖𝑜𝑛𝑖𝑧𝑖𝑛𝑔

𝑑𝑡
𝑑𝑁𝑟𝑒𝑐
𝑑𝑡 𝑑𝑉

3

 

Numerically, the equilibrium volume is 𝑉𝑒𝑞 = 1.0 ⋅ 1061 m3 = 340 kpc3. The equilibrium radius 
of the ionized sphere is then 𝑅𝑒𝑞 = 4.33 kpc. 

A single Population III star thus was able to ionize the volume similar to the one of the Large 
Magellanic Cloud. 

The real ionized regions around the first stars were not spherical, since the distribution of matter 
was not symmetric. Simulations of the reionization of the Universe show patchy structure of 
expanding regions that start to merge at some point. A notable example is a Thesan simulation, 
available at www.thesan-project.com, that computed e.g. shapes and movement of large-scale 
ionization fronts around clusters of early stars. 

http://www.thesan-project.com/

